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We prove that AB site percolation occurs on the line graph of the square lattice
when p ¥ (1 − `1 − pc, `1 − pc), where pc is the critical probability for site per-
colation in Z2. Also, we prove that AB bond percolation does not occur on Z2

for p=1
2 .
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1. INTRODUCTION AND RESULTS

The AB percolation model was first studied in refs. 1 and 2 (also, earlier
paper (3) contains some simulation results for the AB percolation model on
the triangular lattice). The general setting for this model is the following.
Let G=(VG, EG) be the graph with vertex set VG and edge set EG. Into any
vertex v ¥ VG, independently, we put a label ‘‘A’’ with probability p, and put
a label ‘‘B’’ with probability 1 − p; X(v) ¥ {A, B} stands for the state of v.
We call a self-avoiding path p={v0, e0, v1, e1,..., en − 1, vn} (where ei is the
edge between vi and vi+1) on G an AB path if X(vi) ] X(vi+1) for all
0 [ i < n; and we say that AB percolation occurs if there exists an infinite
AB path on G.

The first question that one may ask is: On which graph and when does
AB percolation occur? Let us mention some known results concerning that.
Halley (1) proved that if the graph G is bipartite and has critical probability



for site percolation strictly greater than 1
2 , then AB percolation does not

occur for p=1
2 . Appel and Wierman (4) proved that, on a large subclass of

bipartite graphs including the square lattice Z2, AB percolation does not
occur for any value of p. On the other hand, Scheinerman and Wierman (5)

proved that AB percolation occurs on some periodic two-dimensional
graph. Wierman and Appel (6) proved that AB percolation occurs on the
planar triangular lattice; note that this implies that AB percolation occurs
on the close-packed graph Z2

cp (see Fig. 1(c)). For further work on AB
percolation, see ref. 7 and references therein.

Let Z2
hcp be the half close-packed graph of Z2, namely, the graph

obtained from Z2 by adding the two diagonal edges into the faces of Z2 in
a chessboard-like fashion (see Fig. 1(b)). Note that Z2

hcp is the line graph
(sometimes called covering graph) of Z2. One of the goals of this paper is
to study the AB percolation model on the graph Z2

hcp. As mentioned in the
previous paragraph, AB percolation occurs on Z2

cp but does not occur
on Z2, so it is natural to ask about what happens in the ‘‘intermediate case’’
of Z2

hcp.
Here we answer this question as follows:

Theorem 1.1. Let pc be the critical probability for the site percola-
tion on Z2. Then, AB percolation occurs on Z2

hcp for all p ¥ (1 − `1 − pc,
`1 − pc).

The summary of 19 estimates provided by Ziff and Sapoval (8) suggests
that pc % 0.5927. Wierman (9) gave a rigorous upper bound pc [ 0.679492,
which implies that (0.434, 0.566) … (1 − `1 − pc, `1 − pc) ] ”.

Analogously to AB site percolation model which was discussed above,
one can define AB bond percolation model on a graph G. Namely, for any
e ¥ EG, independently, we label it ‘‘A’’ with probability p, and label it ‘‘B’’
with probability 1 − p. As before, X(e) ¥ {A, B} stands for the state of e.

Fig. 1. The graphs Z2, Z2
hcp and Z2

cp.
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Fig. 2. u is connected to v, v is connected to w, but u is not connected to w by an AB bond path.

We call a self-avoiding path p={v0, e0, v1, e1,..., en − 1, vn} on G an AB
bond path if X(ei) ] X(ei+1) for all 0 [ i < n − 1; and we say that AB bond
percolation occurs if there exists an infinite AB bond path on G.

To the best of our knowledge, the AB bond percolation model was not
yet considered in the literature. At first sight it may seem that the reason of
that is the usual idea of reducing bond percolation to site percolation.
However, for the case of AB percolation, it turns out that this idea does
not work. The explanation for this is the fact that, unlike the case of AB
site model, AB bond percolation is not transitive, i.e., if u is connected to v
and v is connected to w by an AB bond path, this does not imply that u is
connected to w by an AB bond path (see Fig. 2). This of course makes the
problem more difficult, but anyway the question about whether there exists
an infinite AB bond path is relevant. The following theorem gives a partial
answer to this question (and shows, together with Theorem 1.1, that AB
bond percolation on the two-dimensional square lattice is indeed substan-
tially different from AB site percolation on its line graph).

Theorem 1.2. AB bond percolation does not occur on Z2 when
p=1

2 .

Remark. Taking into account the result of Appel, (10) it is reasonable
to conjecture that the percolation probability function for AB bond model
on Z2 is non-decreasing on interval [0, 1

2]. Combined with the symmetry of
the model and Theorem 1.2, this suggests that AB bond percolation does
not occur for any value of p.

2. PROOFS

Define a random field Y on the vertex set of Z2 as follows. For each
edge of the graph Z2, we insert a new vertex into its center. For any
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inserted vertex w, independently, we label it ‘‘A’’ (write X(w)=A) with
probability p, and label it ‘‘B’’ (write X(w)=B) with probability 1 − p. For
any fixed v=(i, j) ¥ Z2, let w1=(i − 1

2 , j), w2=(i, j − 1
2), w3=(i+1

2 , j),
w4=(i, j+1

2) be the four inserted vertices nearest to v. Define the random
variable

Y(v)=1 − 1{X(w1)=X(w2)=X(w3)=X(w4)}.

Clearly, the random field Y={Y(v): v ¥ Z2} is dependent; denote the law
of Y by mp.

Now, let m and n be two Borel probability measures on W :={0, 1}Z
2
.

As usual, we say that m dominates n, if for any continuous increasing
function f it holds that

F f dm \ F f dn.

Denote by Pa the product measure with parameter a ¥ [0, 1] on W. We
have

Lemma 2.1. For any fixed p ¥ [0, 1], mp dominates P1 − q(p), where
q(p)=max{p2, (1 − p)2}.

Proof. We prove this lemma in two steps. L

Step 1. Let B(n)=[ − n, n]2 5 Z2, n ¥ N, and let “B(n)=B(n)0

B(n − 1) be the boundary of B(n). Let us enumerate Z2={v1, v2,...} as
follows: first, let v1 be the origin, and then we order the vertices in “B(1),
“B(2),... in turn. While ordering the vertices in “B(n), we begin at vertex
(n, n − 1) and put vs(n)+1=(n, n − 1), where s(n)=|B(n − 1)|. Then, along
the clockwise direction, order the other vertices in “B(n) in turn (in a way
that vs(n+1)=(n, n)), and so on. So, a special ordering of Z2 was con-
structed (see Fig. 3).

Fig. 3. At step 1 of the proof of Lemma 2.1, we order Z2 in this way.
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Step 2. It follows from well-known standard arguments (see e.g.,
Lemma 1.1 of ref. 11 and references there), that it is sufficient to prove the
following: for the special ordering defined on step 1, for any n1 < n2

< · · · < nj < nj+1 and any choice of c1, c2,..., cj ¥ {0, 1}, it holds that

mp(Y(vnj+1
)=1 | Y(vn1

)=c1,..., Y(vnj
)=cj) \ 1 − max{p2, (1 − p)2} (1)

whenever mp(Y(vn1
)=c1,..., Y(vnj

)=cj) > 0.
If all the neighbors of vnj+1

are not in {vni
: 1 [ i [ j}, then, by defini-

tion of the random field Y, Y(vnj+1
) is independent of {Y(vni

): 1 [ i [ j}.
So, in this case the left-hand side of (1) equals 1 − (p4+(1 − p)4), which is
greater than or equal to 1 − q(p).

If vnj+1
is a neighbor of some vertex vni

, 1 [ i [ j, let E be the set of
edges which connect vnj+1

to its neighbors in {vni
: 1 [ i [ j}. Let V be set of

inserted vertices which lie in the centers of edges of E. By the construction
on step 1, it is clear that, for all given n1 < n2 < · · · < nj < nj+1, we have
1 [ |V|=|E| [ 2 (in the case when vnj+1

has at least one neighbor among
{vnj

: 1 [ i [ j}).
Now, by definition of the random field Y={Y(v): v ¥ Z2}, Y(vnj+1

) is
independent of {Y(vni

): 1 [ i [ j} conditioned on {X(w): w ¥ V}. Then, it is
elementary to get that, for the case |V|=1, the left-hand side of (1)
is bounded from below by 1 − max{p3, (1 − p)3} (which is greater than
or equal to 1 − q(p)), while for the case |V|=2, the left-hand side of
(1) is bounded from below by 1 − q(p). This concludes the proof of
Lemma 2.1. L

Now we are able to finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us think about AB percolation on Z2
hcp

as AB percolation on the line graph of Z2 (two inserted vertices are adja-
cent iff the corresponding edges of Z2 have common vertex). Note that if
p ¥ (1 − `1 − pc, `1 − pc), then 1 − q(p) > pc, so on Z2 there exists an
infinite cluster of sites with Y-value 1. Now, if Y(v)=1, the inserted ver-
tices around v all belong to the same AB cluster. Hence, the infinite cluster
of 1-s on Z2 induces an infinite AB cluster on its line graph, and so the
proof of Theorem 1.1 is finished. L

To prove Theorem 1.2, we consider the following randomly oriented
lattice. For any vertex v=(i, j) ¥ Z2, we call v even if i+j is even and call v
odd otherwise. For any edge e of Z2, let veven(e), vodd(e) be its even and odd
endpoints respectively. Define a randomly oriented bond percolation model
on Z2 as follows: For all e ¥ Z2, independently, let e have the orientation
from veven(e) to vodd(e) with probability p and let e have the opposite orien-
tation with probability 1 − p.
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Now, consider the AB bond percolation model on Z2. Let e0 be the
edge connecting the sites (0, 0) and (0, 1), and suppose, without loss of
generality, that its label is ‘‘A.’’ Let us try to construct an infinite AB bond
path beginning in (0, 0) and whose first bond is e0. It is straightforward to
see that such a path will always need ‘‘A’’ when passing from an even
vertex to an odd one, and ‘‘B’’ otherwise. This argument shows that the
following proposition holds.

Proposition 2.2. AB bond percolation occurs in Z2 if and only if
there exists an infinite oriented path on the randomly oriented lattice
described above.

Remark. Proposition 2.2 can be generalized to any bipartite graph G.
In other words, for any bipartite graph G, one can study percolation on a
randomly oriented graph defined as above instead of studying AB bond
percolation model.

Proof of Theorem 1.2. Grimmett (12) considered another randomly
oriented lattice: Each horizontal edge is oriented rightwards with probabil-
ity p, and leftwards otherwise. Each vertical edge is oriented upwards with
probability p, and downwards otherwise. It is straightforward to see that,
when p=1

2 , the two randomly oriented lattices are the same. As noted in
refs. 7 and 12, in this case they are equivalent to the general bond percola-
tion model on Z2. Then, by Proposition 2.2 and the fact that bond perco-
lation in Z2 does not occur for p=1

2 , Theorem 1.2 follows immediately. L
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